The conclusion is that hydride bridges appear to be so strong because the enthalpy of reorganization $\Delta H_{\text{reorg.}}$ is small for X = H (R₂AlH). This must be related to the absence of a stabilizing π -bonding contribution in the trigonal planar form and to the minor decrease in interligand repulsion on going from pyramidal to trigonal-planar geometry.

Reactions of Aluminum Organyls

The exceptional reactivity of organoaluminum compounds AlR_3 has led to a multitude of synthetic applications that can only be treated in a cursory fashion here. As a limitation it must be noted that in many cases only one of the three Al-C bonds react. Hence $RAIX_2$ (X = Hal, OR', etc.) compounds are much less reactive than AlR_3 . This could be a result of the association to form dimers and oligomers through X-bridges.

$$R_2AI$$
 $R_2AI(OR')$ $R_2AI(OR')$ $R_2AI(OR')$ R_2AICH_2CHRR' R_2AICH_2CHR' R_2AICH_2CHRR' R_2AICH_2CHRR'

Methylalumoxane (MAO) is the highly reactive cocatalyst in olefin polymerization reactions catalyzed by group 4 metallocenyl halides such as Cp₂ZrCl₂ (p. 702). MAO is produced in a proprietary process that involves careful hydrolysis of AlMe₃.

The structural units shown are only examples and are capable of further associations through Lewis acid/base interactions, which give rise to a very complex, non-uniform system. Furthermore, this system is metastable: