Table II. ¹³C NMR Shifts for the η^3 -Allyl Unit of $(\eta^3$ -Butenyl)palladium(II) Complexes

	H ₁₅ 1 2 3 CH ₃				
	H ₁₀ H ₃₀				
	1 Pd 2	s	shifts, ppm		
_				shift diff,	
		C1	C ₂	C ₃	C ₃ - C ₁
13	$L^1 = L^2 = CH_3NH_2$	56.1	'116.45	74.9	19
14	L^1 , $L^2 = TMEDA$	59.3	118.4	75.4	16
15	$L^1 = L^2 = pyr$	58.3	118.9	79.4	21
16	$L^1 = L^2 = (CH_3)_2CO$	57.05	114.2	79.5	22
17	$L^1 = L^2 = Cl^- \text{ (bridged)}$	58.3	111.4	81.5	23
18	$L^1 = L^2 = CH_3CN$	59.8	117.2	83.6	24
19	L^1 , L^2 = diphos	65.6	122.8	92.0	26
20	$L^1 = L^2 = AsPh_3$	71.9	120.6	98.1	26
21	L^1 , $L^2 = COD$	71.4	124.5	98.3	27
22	$L^1 = L^2 = PPh_3$	73.6	122.1	101.5	28
23		68.05	123.2	102.0	34
24	$L^1 = PPh_3, L^2 = CN^-$	61.25	120.3	90.95	30
25	$L^1 = PBu_3$, $L^2 = Cl^-$	46.1	115.4	98.75	53
26	L^1 , $L^2 =$	48.1	119.9	99.4	51
	$Ph_2PCH_2CH_2NMe_2$				
27	$L^1 = PPh_3, L^2 = Cl^-$	56.3	116.95	99.6	43
28	$L^1 = P(OEt)_3, L^2 = CI^-$	50.55	117.6	101.15	51
29	$L^1 = P(OPh)_3$, $L^2 = Cl^-$	51.8	117.25	101.5	50
30		54.2	120.35	101.5	47
31	$L^1 = P(OPh)_3$, $L^2 = py$	52.4	121.4	104.1	52
32	$L^1 = PPh_3$, $L^2 = CH_3CN$	55.0	119.55	105.4	50
33	$L^{1}, L^{2} =$	77.6	124.0	71.2	-6
	$Me_2NCH_2CH_2PPh_2$				

Table IV. 13 C NMR Shifts for the η^3 -Allyl unit of Unsymmetrically Substituted (η^3 -3-Methylbutenyl)Palladium(II) Complexes

	H ₁₈ 2 CH ₃₆				
	H ₁₈ CH ₃₈	shi	shifts, ppm		
	L1 / PO_L2	C ₁	C ₂	C ₃	shift diff, C ₃ - C ₁
54	$L^1 = PPh_3, L^2 = CN^-$	56.9	113.6	107.4	51
55	$L^{1} = CH_{3}NC, L^{2} = Cl^{-}$	50.4	109.8	108.8	58
56	L^1 , L^2 =	46.5	111.6	112.65	66
	Ph ₂ PCH ₂ CH ₂ NH ₂				
57	$L^1 = PBu_3$, $L^2 = Cl^-$	42.3	108.4	114.5	72
58	$L^1 = PPh_3, L^2 = I^-$	57.9	111.4	115.0	57
59	$L^1 = PPh_3$, $L^2 = SCN^-$	≈56 (br)	110.9	115.2	59
60	L^1 , $L^2 =$	43.6	111.2	115.2	72
	$Ph_2PCH_2CH_2NMe_2$				
61	$\hat{\Diamond}$	45.3	111.7	115.3	70
	L1. L2 . Ph2P				
62	$L^1 = PCy_3, L^1 = Cl^-$	41.9	107.7	115.5	74
63	$L^1 = PPh_3$, $L^2 = py$	50.0	112.6	116.2	66
64	$L^1 = PPh_3, L^2 = Cl^-$	52.2	110.2	116.5	64
65		59.1	114.0	117.5	58
	CH ₃ NC				
66		46.3	110.3	118.1	72
67	$L^1 = P(OMe)_3, L^2 = Cl^-$	46.3	110.4	119.0	73
68	$L^1 = P(OPh)_3$, $L^2 = Cl^-$	47.5	110.05	120.05	73
69	$L^1 = P(OPh)_3$, $L^2 = py$	47.55	113.0	120.35	73
70	$L^1 = PPh_3, L^2 =$	50.8	112.2	122.7	72
	CH₃CN				
71	L1.L2 Ph2P	44.7	111.6	123.0	78
	L.L - Ph ₂ P				
	\nearrow				
	<u> </u>				
72	L^1 , $L^2 =$	73.5	118.6	85.6	
	$Me_2NCH_2CH_2PPh_2$				
73		73.3	118.8	86.2	
	L', L ² , O PPh ₂				
	, , N ~				
74	L ¹ , L ² • Me ₂ NN	78.2	118.6	86.5	
	PPh2				
	\bowtie				
	\bigcirc				
75	L^1 , $L^2 =$	67.8	116.5	88.3	
	H ₂ NCH ₂ CH ₂ PPh ₂				

Table 1. ^{13}C NMR Chemical Shifts in δ Units (CDCl3) of Allyl Carbon Atoms in Compounds 8a–f

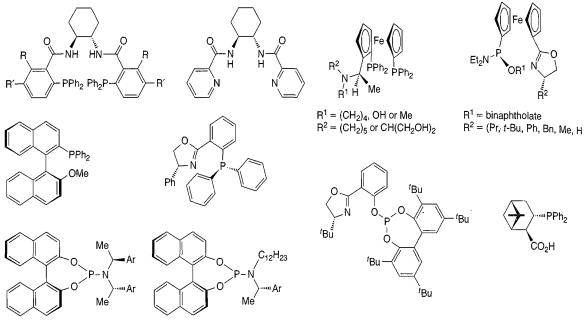
8	X	Y	δ(C-1)	δ(C-2)	δ(C-3)
8a	NO_2	Н	84.70	113.11	93.95
8b	Cl	H	88.17	111.78	91.14
8c	H	H	90.10	111.60	90.10
8d	Me	H	90.72	111.04	89.54
8e	MeO	H	91.45	110.32	88.90
8 f	Cl	NO_2	91.84	113.75	85.41

Forms of Asymmetric Allylic Substitution Reactions

C

$$R \longrightarrow LG \xrightarrow{L_nM} R \longrightarrow Or R \xrightarrow{ML_n^{\oplus}} R \longrightarrow Or R \longrightarrow Nu$$

D
$$LG \longrightarrow LG \longrightarrow LG \longrightarrow NU + NU \longrightarrow LG$$


$$L_nM \longrightarrow ML_n$$

Ε

OR
$$L_nM$$
 R OR or R OR R OR or R OR R OR R OR R

$$R \longrightarrow LG + \xrightarrow{L_nM} R \xrightarrow{R' \cap R''} R \xrightarrow{R'} R \xrightarrow{R'} R \xrightarrow{R'} R$$

Scheme 20.10

Ar = Ph, Naphthyl, o-anisyl

Figure 20.2

Some of the ligands that generate highly enantioselective catalysts for allylic substitution with palladium, molybdenum, and iridium.