The Chemistry of Colorants

Dyes & Pigments

28 June 2018
The Chemistry of Colorants

Dyes & Pigments

28 June 2018

1. (Brief) History of colorants
2. Classifications
3. Physical chemistry
4. Types of dyes and pigments
5. Eight modern research examples
6. Why you might care/current industry
History of dyes and pigments

- Dyes have been derived from plants, animals, and minerals
 - *Indigoid dye* represents the arguably oldest natural dye
 - From plant *Indigofera tinctoria*
 - Used in India for ~4000 years
 - *Woad* was another source of blue in Europe
 - From *Isatis tinctoria*
 - Used in Bronze Age Europe (2500-800 BC)
 - *Tyrian purple* produced the royal color
 - From shell fish Purpura and Murex
 - Made in Tyre and Sidon since 800 BC
 - Produced an awful smell
 - Only source of purple for thousands of years

Many natural dyes have a low chemical affinity to textiles. It was a multistep process to prepare fibers:

1. A mordant (metal salt) is used to impregnate the fibers
 - Metal ion complexes with functional groups
 - Often Al, Fe, Sn, Cr, Cu
 - Commonly used were potash alum $[\text{KAl(SO}_4\text{)}_2 \cdot 12\text{H}_2\text{O}]$ and iron sulfate $[\text{FeSO}_4 \cdot 7\text{H}_2\text{O}]$ and (SnCl_2)
 - Treatment of fabric occurred often in metal vats or with iron nails present
2. The dye was introduced to coordinate with the metal-impregnated fabric

J.N. Chakraborty, in Handbook of Textile and Industrial Dyeing, 2011
Moving away from natural sources

• First two synthetic pigments developed:

1. White lead, basic lead carbonate $[2\text{PbCO}_3\cdot\text{Pb(OH)}_2]$
 • Described first by Theophrastus of Eresos (~300 BC)
 • Created by combining lead and acetic acid in the presence of CO_2

2. Blue Frit, Egyptian Blue $[\text{CaCuSi}_4\text{O}_{10}]$
 • First evidenced in Egypt (~3000 BC)
 • Created by heating together quartz sand, copper, calcium carbonate, and alkali from ash up to 800-1,000 °C

$$\text{Cu}_2\text{CO}_3(\text{OH})_2 + 8\ \text{SiO}_2 + 2\ \text{CaCO}_3 \rightarrow 2\ \text{CaCuSi}_4\text{O}_{10} + 3\ \text{CO}_2 + \text{H}_2\text{O}$$

Moving into Modernity

• Prussian Blue
 • First truly modern synthetic pigment arising as a result of a deliberately conducted chemical reactions
 • Produced by Diesbach in Berlin in 1704 trying to produce a lake pigment (metal coordinated natural pigment)
 • Created originally by mixing potash, iron sulfate, and blood
 • Cyanide in Greek means “dark blue”
By the early 19th century, synthetic blue colorants existed:
- French ultramarine
 - Synthesized - 1826
 - \(\text{Al}_6\text{Na}_8\text{O}_{24}\text{S}_3\text{Si}_6 \)
- Cobalt blue
 - Synthesized - 1802 (Thenard)
 - \(\text{CoAl}_2\text{O}_4 \)
- Cerulean blue
 - Discovered 1789 (Hopfner)
 - \(\text{CoO}_3\text{Sn} \)
- Phthalo blue (CuPc)
 - Discovered 1927

Soon in the 20th century, reddish-purples, blues, violets, greens, and red dyes started replacing more expensive natural dyes.

Dyes and Pigments

Dyes

Pigments

Acid red 52

Dyes

Dyes are required to solvate during the application process; they often also have some affinity for the material being colored. Selectively absorb light due to specific chemical nature of dye.

Pigments

Pigments are specific colorants composed of particles insoluble in the application medium; they are colored, colorless, or fluorescent and can be organic or inorganic, finely divided solids. Selectively absorb and/or scatter light due to pigment & material.

Dyes and Pigments

Colorants

Organic (~15%)

Dyes (75%)

Inorganic (~85%)

Pigments (25%)

Pigments

The Chemical Physics of Colorants

• Industrial value of dyes depends on *wavelength* and *intensity* of the absorption band as a function of dye concentration.

\[A = \log_{10} \frac{I_o}{I} = \varepsilon l c \]

Technically important dyes display extinction coefficients in excess of \(10^4 - 10^5 \text{ M}^{-1} \text{ cm}^{-1}\)

The Chemical Physics of Colorants

• Chromophores absorb light within the UV or visible range
 • *Examples*: C=C, C≡C, C=O, C≡N, N=N, NO₂

• Different transitions can occur with chromophores
 • $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ and $n \rightarrow \sigma^*$

• Auxochromes are covalently saturated groups that change the wavelength or intensity of the absorption maximum
 • *Examples*: NH₂, OH, SH, halogens
 • Tend to increase wavelength and intensity through conjugation resonance

• Conjugated chromophores tend to increase wavelength and intensity
 • Create an additional set of HOMO/LUMO pairs and increase conjugation area
 • Energy difference between HOMO & LUMO is lowered leading to a bathochromic shift
The Chemical Physics of Colorants

• Chromogens are chemical compounds that are colored or could be made colored by the attachment of a suitable substituent (increases the conjugated system size)

• Solvent yellow 7 (4-Hydroxyazobenzene) as an example:

![Chemical structure of Solvent yellow 7]

• Colorants possess several important traits
 • Absorbs light in the visible spectrum (400-700 nm)
 • Have at least one chromophore
 • Have a conjugated system
 • Exhibit resonance of electroms

Hossain I (2014). Investigation into cotton knit dyeing with reactive dyes to achieve right first time (RFT) shade. Master Thesis. Daffodil International University, Bangladesh
The Chemical Physics of Colorants

• General rules for adjusting color:

 • Adding electron-donating groups gives a bathochromic effect

 • Electron-donating and electron-accepting groups in conjugation provide an intense bathochromic effect

 • Increasing the number of electron-attracting groups conjugated with electron-donor groups has a bathochromic effect

 • The electron donating group are enhanced by adding alkyl groups to the N-atom

Common Classes of Colorants

• Dyes:
 • Acid Dyes
 • Anthraquinone Dyes
 • Azo Dyes
 • Basic Dyes
 • Direct Dyes
 • Disperse Dyes
 • Indigoid Dyes
 • Nitro and Nitroso Dyes
 • Phthalocyanine Dyes
 • Reactive Dyes
 • Sulfur Dyes
 • Vat Dyes

• Pigments:
 • Inorganic Pigments
 • Organic Pigments
Common Classes of Colorants

• Dyes:
 • Acid Dyes
 • Anthraquinone Dyes
 • Azo Dyes
 • Basic Dyes
 • Direct Dyes
 • Disperse Dyes
 • Indigoid Dyes
 • Nitro and Nitroso Dyes
 • Phthalocyanine Dyes
 • Reactive Dyes
 • Sulfur Dyes
 • Vat Dyes

• Pigments:
 • Inorganic Pigments
 • Organic Pigments
Acid Dyes

• Generally comprised of organic sulfonic acids

• Commercially available as sodium salts; excellent water solubility

• Contains azo, anthraquinone, triphenylmethane, nitro, and nitroso chromophoric groups

• Used to dye many types of fiber:
 • Cotton
 • Polyester
 • Rayon
 • Wool
 • Silk

Anthraquinone Dyes

• Based around an anthraquinone central structure

• Some of the oldest types of dyes (found >4000 years ago)
• Good brightness and fastness
• Most synthetic substitution occurs at the α-position with sulfonation or nitration
• For β-substituted dyes, synthesis usually starts from phthalic anhydride or benzene derivatives

Disperse red 60
Reactive blue 19

Azo Dyes

• Most common and most widely used; >60% of the dyes

\[
\text{A} - \text{N}=\text{N} - \text{B}
\]

• Often contain two aromatic groups in A & B, but must have at least one
• Exist in the trans form
• “A” often contains electron-accepting substituents while “B” contains electron-donating substituents

Acid red 2

Disperse yellow 7

Basic Dyes

• Also called cationic dyes due to the presence of a positive charge, often caused by an ammonium cation

• Being water soluble, they were originally used for paper, silk and wool

• Generally low color fastness
 • Forms covalent bonds with acrylic fibers negating this issue
Direct Dyes

• Water-soluble and easily applied to cellulose
 • Anionic; forms bonds with cellulosic fibers
 • No mordant required
 • Applied from aqueous mixture containing an electrolyte

• Generally have high molecular masses
 • Promotes dye aggregation
 • Promotes substantively to the fiber

• Also called substantive dye

Direct blue 1

Direct black 22

Disperse Dyes

• Often contain azo, anthraquinone, and nitro groups

• Water-insoluble dyes with affinity for hydrophobic fibers
 • Nylon
 • Cellulose
 • Acrylic

Disperse yellow 26 Disperse red 9

Indigoid Dyes

• All based on the organic compound—indigo

\[
\text{H} = \begin{array}{c}
\text{N} \\
\text{C} \end{array}
\]

• Obtained from natural sources for \(~5000\) years until the 19\(^{th}\) century
• One of the first natural molecules synthesized
• Pflegers’s method is used to create most of the high quality indigo

\[
\text{NaOH} \quad \text{KOH} \quad \text{NaNH}_2 \quad \text{-H}_2\text{O} \quad \text{O}_2 \quad \text{-H}_2\text{O}
\]

\[
\begin{align*}
\text{pH} & \quad \text{Below 11.4} & \quad \text{Above 13.0}
\end{align*}
\]

Ünlü M (2008) Indigo dyeing wastewater treatment by the membrane based filtration process, Master Thesis, Middle East Technical University, Ankara, Turkey
Nitro and Nitroso Dyes

• Minor commercial importance

• Of interest for their small molecular structure

• Used in acid form to dye natural fibers such as silk or wool

Disperse yellow 1

Picric Acid

Acid yellow 24

Phthalocyanine Dyes

• A class of macrocyclic compounds possessing a highly conjugated electron system with intense near-IR absorption

• They have a number of unique properties:
 • Increased stability
 • Diverse coordination properties
 • Architectural flexibility

• Often intense color in 650-750 nm range

• Coordinates with metals such as Cu, Fe, Si, Ge, As

Reactive Dyes

• Differ from other dyes because their molecules react to form covalent bonds with functional groups on the fibers

• Have exceptional qualities:
 • High wet-fastness
 • Brilliant
 • Large range of hues

• Usually contain –NH–, –CO–, or –SO₂– as linking group

Reactive Red 198

Sulfur Dyes

• Almost always used for dyeing cellulosic fibers

• Insoluble in water
 • Reduced to the water-soluble leuco (white/reduced) form
 • Applied using sodium sulfide solution
 • Dye formed via oxidation while impregnated in the fiber

• Often they don’t have well defined structures or compositions due to oligomerization & di/poly-sulfide links

Springer RM (1997) Chemistry and Applications of Leuco Dyes
Vat Dyes

• Water-insoluble pigments
 • Called dyes because in alkaline solution, reduction occurs forming a water-insoluble leuco form

• Held to cellulose via van der Waals forces and hydrogen bonding

• Oxidizes on drying to become water-insoluble again leading to high color fastness

• Lack of industry knowledge and basics for application techniques have led to a decrease of usage

Vat yellow 4
Vat blue 1 / Indigo
Vat brown 45
Inorganic Pigments

• Broken into four categories:
 1. White
 2. Black
 3. Colored
 4. Miscellaneous
 • Metal effect
 • Flakes/lamella-shaped particles of soft, ductile metals
 • Avoid issues of organic molecules hindering cold welding
 • Nacreous
 • Pearlescence due to multiple partial reflections
 • Fish-scales (guanine)
 • Transparent
 • Used in protection as a lacquer
 • Blocks UV light with small particles
 • Luminescent
 • Solid fine particulates
 • Reemit absorbed energy as light
 • Rely on fluorescence or phosphorescence

Buchel KH, Moretto H, Werner D (2015) Industrial Inorganic Chemistry
Organic Pigments

• Based on carbon chains and carbon rings
 • Can have metallic elements for stabilization
 • Must be insoluble at the time of application
 • Have a smaller average particle size than inorganic pigments

• Broken down into six main categories:
 1. Azo
 2. Triaryl carbonium
 3. Anthraquinone
 4. Dioxazine
 5. Polyclic
 6. Quinophthalone

Pigment yellow 12
Pigment yellow 138
Pigment violet 23

BASF (2017) Pigments
YInMn Blue

• Discovered accidentally by Andrew Smith and Prof. Mas Subramanian at Oregon State University in 2009
 • Looking for multiferroics
 • Instead formed, at 2,000 °F upon mixing of YInO₃ and YMnO₃, a bright blue compound
• Prof. Subramanian recognized the potential use as a pigment
 • Had worked for DuPont Co.
 • Filed patent disclosure covering the pigment
• Notable features
 • Extremely vibrant, near-perfect blue
 • Extremely stable; does not fade (as does ultramarine/Prussian blue)
 • Non-toxic (as is cobalt blue)
 • Strong infrared radiation reflection (useful for energy-saving cool coatings)
• Crayola created the “Bluetiful” crayon, replacing Dandelion (2017)
• Being released as an acrylic paint by Matisse
• Can adjust color by changing ratios; YIn₀.₈Mn₀.₂O₃–optimal

C@ZrSiO$_4$

- Published 2016 by Weihui Jiang at Jingdezhen Ceramic Inst.
- A zircon-based black pigment consisting of \textit{in-situ} polycondensation
- After enameling on tiles at 1200 °C, C@ZrSiO$_4$ pigment appeared a promising candidate for high temp. ceramics
 - Smooth, clean, deep hue
 - High tinting ability
 - Absence of any surfactants

- 30m in air at 1200 °C
- No cracks or holes seen
- Inclusion of pigment has good thermal and chemical stability in the glaze at high temp.

Synthetic Development of Succinimide Dyes

- Published 2014 by Yousef Valizadeh
- Developed a one-pot reaction of *Meldrum’s acid*, alkyl isocyanide, and 4-(2-phenyldiazenyl)benzenamine

\[
A = \log_{10} \frac{I_o}{I} = \varepsilon l c
\]

<table>
<thead>
<tr>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>348</th>
<th>346.7</th>
<th>344</th>
<th>344</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>1.66</td>
<td>0.4</td>
<td>1.35</td>
<td>1.32</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>30,180</td>
<td>40,000</td>
<td>26,470</td>
<td>24,900</td>
</tr>
</tbody>
</table>

Tyrian purple
Theoretical/Computational Studies

• Yujun Zheng’s group at Shandong University study the most important component of modern deep red pigments—alkannin
• The group explores the mechanism of the double proton transfer

Model the energy

• Confirm importance TS1
• Suggest the stepwise excited state double proton transfer
Development of a New Chelating Dye

• Hongping Zhou in Anhui University in 2018 developed a copper sensitive dye for use in water samples and *in vivo* experiments.

![Chemical structure](image)

Huihui Zhang, Zeyue Wei, Ying Xia, Min Fang, Weiju Zhu, Xingyuan Yang, Fei Li, Yupeng Tian, Xuanjun Zhang, Hongping Zhou, Exploration research on synthesis and application of a new dye containing di-2-picylamine. Saa(2017), https://doi.org/10.1016/j.saa.2018.02.023
Photochromic Colorants

• Ben Zhong Tang at HKUST-Shenzhen Research Institute published in 2018 a multiphotochrome molecule

- Can “turn-on” or “turn-off” based on amount of water present in CH$_3$CN

- Could be doped into a polymer matrix to act as miroactuators and create a corresponding macroscopic behavior in the material

<table>
<thead>
<tr>
<th>Fraction of water (vol %)</th>
<th>0</th>
<th>50</th>
<th>70</th>
<th>80</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimerized</td>
<td><1%</td>
<td><4%</td>
<td><4%</td>
<td>90%</td>
<td>99%</td>
</tr>
<tr>
<td>Cyclized</td>
<td>99%</td>
<td>96%</td>
<td>96%</td>
<td><10%</td>
<td><1%</td>
</tr>
</tbody>
</table>
Vertically Aligned Nanotube Arrays

- Original development by Lehman in the UK for use in thermal detection applications in the infrared
- Spectrally flat over most visible wavelengths
 - Absorbs 99.965% of visible light
 - Vertical nanotubes are grown using chemical vapor deposition
 - Light doesn’t reflect out, but gets trapped in the tubes until absorption

"Vantablack, the world's darkest material, is unveiled by UK". South China Morning Post - World. 15 July 2014.
Kohei Mizuno, Juntaro Ishii, Hideo Kishida, Yuhei Hayamizu, Satoshi Yasuda, Don N. Futaba, Motoo Yumura, and Kenji Hata PNAS April 14, 2009. 106 (15) 6044-6047; https://doi.org/10.1073/pnas.0900155106
Near-Infrared-Transmitting Optical Filter

- Developed by Ayyappanpillai in 2017
- Visibly opaque but NIR-transparent materials are important for security systems and night-vision technology
 - DPP-Amide blocks 300-800 nm light by H-bonding and π-stacking
 - Transmits beyond 850 nm
Industrial Opportunities

• Typical Education Requirement
 • Ph.D. required for most research positions
 • Postdoctoral work required for most academic positions
 • Synthetic chemistry
 • Analytical chemistry
 • Organic chemistry
 • Polymer chemistry
 • Material chemistry

• Future Employment Trend
 • Steady growth in paints & varnishes
 • Accounts for 43% of pigment and 27% of plastic colorant demand
 • Niche markets expected to grow
 • Photochromic colorants
 • Medical dyes
 • Infrared dyes for security
 • Hair dyes
 • High-tech applications up-and-coming
 • Inkjet microfabrication
 • 3D printing

• Laboratories
 • Academic
 • Industrial
 • Government

• Salaries (2015)
 • Lab managers: $76,000 median
 • Pigment chemists: $65,400 median
 • Ink chemists: $60,200 median
 • (note: B.S. chemists earn $50 to $80K)
Industrial Opportunities

• Typical work
 • Develop applications for existing dyes and pigments
 • Examine health, environmental, and safety concerns of colorants
 • Design, create, and characterize novel products and formulations
 • Analyze historical artifacts and artwork for pigments and dyes used
 • Work in crime scene analytics determining dyes and pigments in evidence
 • Teach courses and train students

Professional Organizations

[ZnO]
Thank Your for Your Attention!

Great resources

