Hydrofluoric Acid (HF)

- **Physical Properties**
 - Colorless gas or fuming liquid
 - Pungent odor at <1 ppm
 - $pK_a = 3.15$
 - Exothermic with water

- **Toxicity**
 - HF causes severe burns
 - Concentrated (> 50% HF) solutions cause immediate, severe, burning pain and a whitish discoloration of the skin which usually proceeds to blister formation
 - Moderately concentrated (20-50% HF) solutions may have up to an 8 hour latency period for symptoms
 - Dilute (<20%) solutions may not produce symptoms for up to 24 hours
 - Concentrated HF burns can be fatal if only 2% of the body surface area is exposed
 - Fluoride ions readily penetrate the skin, causing destruction of deep layer tissues that can continue for days if left untreated
 - Fluoride ions form insoluble salts with calcium and magnesium in tissue, which is thought to be the cause for the severe, throbbing pain associated with HF burns
 - Fluoride poisoning is associated with hypocalcemia (low calcium levels), hyperkalemia (high potassium levels), hypomagnesemia (low magnesium levels), and sudden death

- **Handling**
 - Follow all standard procedures for dangerous chemicals, including reviewing safety and proper handling, notifying safety officers, wearing PPE, and never working alone
 - It is especially important to use the most appropriate gloves based on the concentration of HF and the length of time for handling
 - Use containers made from polyethylene or Teflon, NEVER glass
 - Have either 2.5% calcium gluconate gel or Zephiran solution on hand

- **First Aid**
 - Immediately flush the area with cold, running water for 5 minutes, and remove any contaminated clothing
 - Dial 77, and disclose that the injury is a xx% or xx M hydrofluoric acid burn while the person is washing the burn site
 - Use a new pair of resistant gloves and massage the 2.5% calcium gluconate gel into the burn site (CaF_2 should precipitate)
 - Re-apply the 2.5% calcium gluconate gel every 10-15 minutes or until EMS arrives

- **Misc.**
 - Do not attempt to neutralize HF with sodium or potassium carbonate, sodium or potassium hydroxide, or silicon-based absorbent materials